

a/d OFM platform has been extensively employed in clinical setting to advance drug development and understanding the general physiology and pathophysiology. The technique and principles can easily be back-translated to preclinical studies

To access an extended list of publications and presentations from the research group at [Joannneum Research-Health](#), who pioneered the OFM technology, please [click here](#)

Selected Preclinical Publications on a/d OFM

1. Open Flow Microperfusion: An Alternative Method to Microdialysis? Pieber et al., *Chapter 15 In: M. Müller (ed.), Microdialysis in Drug Development, AAPS Advances in the Pharmaceutical Sciences Series.* [\(click for reprint\)](#)
2. **AAPS Poster:** Evaluation of the Psoriasis-like Inflammation in the Imiquimod Rat Model using Dermal Open Flow Microperfusion. Bodenlenz et al., *AAPS Annual Meeting and Exposition, Denver, 2016.* [\(click for reprint\)](#)
3. **AAPS Poster:** Continuous Sampling of Immune Cells in the Skin by Dermal Open Flow Microperfusion, Bodenlenz et al., 2016. *AAPS Annual Meeting and Exposition, Denver, 2016.* [\(click for reprint\)](#)
3. Rapid online-SPE-MS/MS method for ketoprofen determination in dermal interstitial fluid samples from rats obtained by microdialysis or open-flow microperfusion. Pickl et al., *J Chromatogr B Analys Technol Biomed Life Sci.* 2007 May 1;850(1-2):432-9. [\(click for reprint\)](#)

Selected Clinical Publications on a/d OFM

1. Quantification of acyclovir in dermal interstitial fluid and human serum by ultra-high-performance liquid-high-resolution tandem mass spectrometry for topical bioequivalence evaluation. Schimek et al, *Biomed Chromatogr*. 2018 Jan 19 (Epub ahead of print). ([click for reprint](#))
2. Quantification of Basal Insulin Peglispro and Human Insulin in Adipose Tissue Interstitial Fluid by Open-Flow Microperfusion. Tiffner et al., *Diabetes Technol Ther*. 2017 May;19(5):305-314. ([click for reprint](#))
3. Microdialysis of Large Molecules. Jadhav et al., *J Pharm Sci*. 2016 Nov;105(11):3233-3242. ([click for reprint](#))
4. Open Flow Microperfusion as a Dermal Pharmacokinetic Approach to Evaluate Topical Bioequivalence. Bodenlenz et al., *Clin Pharmacokinet*. 2017 Jan;56(1):91-98. ([click for reprint](#))
5. Kinetics of Cloetasol-17-Propionate in Psoriatic Lesional and Non-Lesional Skin Assessed by Dermal Open Flow Microperfusion with Time and Space Resolution. Bodenlenz et al., *Pharm Res*. 2016 Sep;33(9):2229-38. ([click for reprint](#))
6. Secukinumab distributes into dermal interstitial fluid of psoriasis patients as demonstrated by openflow microperfusion. Dragatin et al., *Exp Dermatol*. 2016 Feb;25(2):157-9. ([click for reprint](#))
7. Bioavailability of insulin detemir and human insulin at the level of peripheral interstitial fluid in humans, assessed by open-flow microperfusion. Bodenlenz et al., *Diabetes Obes Metab*. 2015 Dec;17(12):1166-72. ([click for reprint](#))
8. Estimation of human leptin concentration in the subcutaneous adipose and skeletal muscle tissues. Sendlhofer et al., *Eur J Clin Invest*. 2015 May;45(5):445-51. ([click for reprint](#))
9. Open flow microperfusion: pharmacokinetics of human insulin and insulin detemir in the interstitial fluid of subcutaneous adipose tissue. Höfferer et al., *Diabetes Obes Metab*. 2015 Feb;17(2):121-7. ([click for reprint](#))
10. Recirculation--a novel approach to quantify interstitial analytes in living tissue by combining a sensor with open-flow microperfusion. Schaupp et al, *Anal Bioanal Chem*. 2014 Jan;406(2):549-54. ([click for reprint](#))
11. Clinical applicability of dOFM devices for dermal sampling. Bodenlenz et al., *Skin Res Technol*. 2013 Nov;19(4):474-83. ([click for reprint](#))
12. Dermal PK/PD of a lipophilic topical drug in psoriatic patients by continuous intradermal membrane-free sampling. Bodenlenz et al., *Eur J Pharm Biopharm*. 2012 Aug;81(3):635-41.

13. Comparison of open-flow microperfusion and microdialysis methodologies when sampling topically applied fentanyl and benzoic acid in human dermis ex vivo. [Holmgaard et al., Pharm Res. 2012 Jul;29\(7\):1808-20. \(click for reprint\)](#)
14. Interleukin-6 produced in subcutaneous adipose tissue is linked to blood pressure control in septic patients. [Ikeoka et al., Cytokine. 2010 Jun;50\(3\):284-91. \(click for reprint\)](#)
15. Advances in adipose tissue metabolism. [Lafontan M. Int J Obes \(Lond\). 2008 Dec;32 Suppl 7:S39-51. \(click for reprint\)](#)
16. Physiological hyperinsulinemia has no detectable effect on access of macromolecules to insulin-sensitive tissues in healthy humans. [Weinhandl et al., Diabetes. 2007 Sep;56\(9\):2213-7. \(click for reprint\)](#)
17. Subcutaneous adipose tissue exerts proinflammatory cytokines after minimal trauma in humans. [Pachler et al., Am J Physiol Endocrinol Metab. 2007 Sep;293\(3\):E690-6. \(click for reprint\)](#)
18. Measurement of interstitial insulin in human adipose and muscle tissue under moderate hyperinsulinemia by means of direct interstitial access. [Bodenlenz et al., Am J Physiol Endocrinol Metab. 2005 Aug;289\(2\):E296-300. \(click for reprint\)](#)
19. Interstitial glucose kinetics in subjects with type 1 diabetes under physiologic conditions. [Wilinska et al., Metabolism. 2004 Nov;53\(11\):1484-91. \(click for reprint\)](#)
20. Assessment of transcapillary glucose exchange in human skeletal muscle and adipose tissue. [Regitnig et al., Am J Physiol Endocrinol Metab. 2003 Aug;285\(2\):E241-51. \(click for reprint\)](#)
21. Measurement of interstitial albumin in human skeletal muscle and adipose tissue by open-flow microperfusion. [Ellmerer et al., Am J Physiol Endocrinol Metab. 2000 Feb;278\(2\):E352-6. \(click for reprint\)](#)
22. Direct access to interstitial fluid in adipose tissue in humans by use of open-flow microperfusion. [Schaupp et al., Am J Physiol. 1999 Feb;276\(2 Pt 1\):E401-8. \(click for reprint\)](#)
23. Lactate metabolism of subcutaneous adipose tissue studied by open flow microperfusion. [Ellmerer et al., J Clin Endocrinol Metab. 1998 Dec;83\(12\):4394-401. \(click for reprint\)](#)
24. Continuous measurement of subcutaneous lactate concentration during exercise by combining open-flow microperfusion and thin-film lactate sensors. [Ellmerer et al., Biosens Bioelectron. 1998 Oct 15;13\(9\):1007-13. \(click for reprint\)](#)
25. Open-flow microperfusion of subcutaneous adipose tissue for on-line continuous ex vivo measurement of glucose concentration. [Trajanoski et al., Diabetes Care. 1997 Jul;20\(7\):1114-21. \(click for reprint\)](#)